Igor Vorobyov

Igor Vorobyov

Position Title
Assistant Professor

  • Physiology and Membrane Biology & Pharmacology (School of Medicine)
4133 Tupper Hall

Research in our laboratory focuses on using computer modeling and simulation techniques, such as molecular docking and molecular dynamics, to study interactions of drugs and other small molecules with membrane associated and water soluble proteins of biomedical significance. In particular, we have been using atomistic computational models to reveal molecular mechanisms of voltage-gated sodium and potassium channel ion conduction and drug binding: Voltage-gated sodium (NaV), potassium (KV) and calcium (CaV) channels are integral membrane transport proteins, which are crucial components of electrical signaling in excitable cells and are key targets for therapeutics used for cardiac and neurological disorders.

In a collaborative NIH funded study led by Prof. Colleen Clancy we use multi-scale modeling approaches to develop in silico predictive safety pharmacology for drugs, affecting functions of cardiac voltage-gated ion channel proteins KV11.1 (also known as hERG), NaV1.5 and CaV1.2. Channel state-specific drug affinities, entry and egress kinetics are computed from our all-atom simulations and used to populate multi-scale functional models developed in Prof. Clancy's laboratory. These studies are performed in collaboration with Profs. Vladimir Yarov-Yarovoy, Jon Sack, Kazuharu Furutani, Heike Wulff and Eleonora Grandi at UC Davis, Sergei Noskov at University of Calgary (Canada) and Toby Allen at RMIT University (Australia).

In another collaborative project with Prof. Fredric Gorin at UC Davis, we are working on potential anti-cancer drug testing via predicting their binding conformations and affinities to a protein complex UPA/PAI-1, over-expressed in highly malignant cancer cells. Molecular docking and molecular dynamics simulations have been used to correlate drug protein binding to anti-tumor activities, predicted by experimental studies in Prof. Gorin's laboratory.

Accepting students per funding availability.

Research Interests & Expertise
  • Molecular modeling and simulation of membrane protein structure and function modulations by lipids, drugs, hormones, and other proteins.